Where:
                 
                PHIe = effective porosity (fractional)
                 
                U = photoelectric absorption cross section (barns/cm3)
                 
                UH = photoelectric absorption of hydrocarbon (barns/cm3)
                 
                UMA = photoelectric absorption of matrix rock (barns/cm3)
                 
                USH = photoelectric absorption of shale (barns/cm3)
                 
                UW = photoelectric absorption of water (barns/cm3)
                 
                Vsh = volume of shale (fractional)
                Note - 1.0 barn = 1*10^- 24 square centimeters - pretty small cows!
					
					
					 COMMENTS
			
					COMMENTS
                	The Uma values can be used in crossplots with matrix density (DENSma), to determine lithology
                fractions in a two or three mineral model.
			
			 
                 Matrix Density vs Matrix Cross Section Crossplot
                for Lithology
              
					
			 Rock Volume from PE
				Density Neutron Models
				
				Rock Volume from PE
				Density Neutron Models
				
				
					A few preliminary calcs are 
				meeded:
      3: DENS = PHID * KD1 + (1 - PHID) * KD2
					     
					4: DENSSH = PHIDSH * KD1 + (1 - PHIDSH) * KD2
					
                      5: DENSma = (DENS - PHIe * DENSW - Vsh * DENSSH) / (1 - PHIe
                - Vsh)
                
					      
				6: USH = PESH * DENSSH
					     
					7: Uma = (PE * DENS - Vsh * USH) / (1 - PHIe - Vsh)
					
					
			 PE 2- Mineral Model
				
				PE 2- Mineral Model 
				Linearly interpolate between any two mineral  
				end points and solve for Vmin1 and Vmin2. This is the ONLY 
				mineral  model for gas zones as PE is unaffected by gas. 
				Also excellent for oil and water zones.
                      8: Vmin1 = (PE - PE2 - Vsh * PESH)
				/ (PE1 - PE2)
                      9: Vmin2 = 1.00 - Vmin1
              
					` Uma 2- Mineral Model
				
				Uma 2- Mineral Model 
				Linearly interpolate between any two mineral  
				end points and solve for Vmin1 and Vmin2. DO NOT usel for gas 
				zones.
                      10: Vmin1 = (Uma - UMA2 - Vsh *
				USH) / (UMA1 - UMA2)
                      11: Vmin2 = 1.00 - Vmin1
				
				
					` DENSma 2- Mineral Model
				
				DENSma 2- Mineral Model 
				Linearly interpolate between any two mineral  
				end points and solve for Vmin1 and Vmin2. DO NOT usel for gas 
				zones.
                      12: Vmin1 = (DENSma - DENS2) / (DENS1 - DENS2) 
                      13: Vmin2 = 1 - Vmin1
				
					
				
				
			 DENSma - Uma 3 - Mineral Model
				
				DENSma - Uma 3 - Mineral Model 
				Crossplot solution to three mineral end points 
				DO NOT usel for gas zones.
				See 
			
						
						Density Log Models  
				for DENSma calculation, needed for this model.
                      14: D = (Uma * (DENS2 - DENS1) + DENSma * (UMA1 - UMA2) 
                            
				+ UMA2 * DENS1 - UMA1 * DENS2) / (UMA1 * (DENS3 - DENS2) 
                            
                + UMA2 * (DENS1 - DENS3) + UMA3 * (DENS2-DENS1))
                      15: E = (D * (DENS3 - DENS1) - DENSma + DENS1) / (DENS1 - DENS2)
                      16: Vmin1 = MAX(0, 1 - D - E) /
				(MAX(0, 1 - D - E) + MAX(0, D) + MAX(0, E))
                      17: Vmin2 = MAX(0, E) / (MAX(0, 1
				- D - E) + MAX(0, D) + MAX(0, E))
                      18:Vmin3 = (1 - Vmin1 - Vmin2)
              Where:
                 
                PHIe = effective porosity from any method (fractional)
                 
                PE = measured PE log value of rock mixture
                 
                PE1 = PE of first mineral (fractional)
                 
                PE2 = PE of second mineral (fractional)
                 
                Vmn1 = relative volume of first mineral (fractional)
                 
                Vmin2 = relative volume of second mineral (fractional)
                 
                Vmin3 = relative volume of third mineral (fractional)
                 
                Vsh = volume of shale (fractional)
 
                Uma = computed UMA value of rock mixture
                 
                UMA1 = UMA of first mineral (fractional)
                 
                UMA2 = UMA of second mineral (fractional)
                 
                UMA3 = UMA of third mineral (fractional)
                 
                DENSma = computed matrix density value of rock mixture
                 
                DENS1 = matrix density of first mineral (fractional)
                 
                DENS2 = matrix density of second mineral (fractional)
                 
                DENS3 = matrix density of third mineral (fractional)
                 
			
					
			 COMMENTS:
			COMMENTS:
                
                The relative Vmin values must be multiplied by
			Vrock to get absolute values of V1, V2, V3. Vrock = 1- PHIe -Vsh..
			
					
			 NUMERICAL
                EXAMPLE:
			NUMERICAL
                EXAMPLE:
                1.
			Assume data as follows:
                PE = 1.68 barns/cm3
                DENS = 2.20 gm/cc
                PHIN = 0.27
                U = 1.68 * 2.20 = 3.69
                Uma = 1.68 * 2.20 / (1 - 0.27) = 5.20
              Both
                PE and Uma are close to the  quartz values. If
                it is dolomitic sandstone, assume:
                Vsh = 0.10
                PHIe = 0.24
                Uqrtz = 4.79
                Udolo = 9.00
              
				Vmin1 = (5.20 - 9.00) / (4.79 - 9.00) = 0.90
                Vmin2 = 1.00 - 0.90 = 0.10Vrock
                = 1 - 0.10 - 0.24 = 0.66.
                
				Values to plot in lithology track:
                V1 = 0.90 * 0.66 = 0.60
                V2 = 0.10 * 0.66 = 0.06
				
				The
                rock matrix is 90% quartz, 10% dolomite, but 34% of this is made
                up of porosity and shale, so the actual volumes of matrix rock
                are reduced by this amount.
               
			
			
			
			
					
			 MATRIX
			
				ROCK PARAMETERS
 
			
				MATRIX
			
				ROCK PARAMETERS
			
			
			
			