| 
					
					
					 Lithology from Matrix
					Density The response equation for the density log follows the classical
                form:
 1:
                DENS = PHIe * Sxo * DENSw (water term)
 + PHIe * (1 - Sxo) * DENSh (hydrocarbon term)
 + Vsh * DENSsh (shale term)
 + (1 - Vsh - PHIe) * Sum (Vi * DENSi) (matrix term)
 Where:DENSh = log reading in 100% hydrocarbon
 DENSi = log reading in 100% of the ith component of matrix rock
 DENS = log reading
 DENSHsh = log reading in 100% shale
 DENSw = log reading in 100% water
 PHIe = effective porosity (fractional)
 Sxo = water saturation in invaded zone (fractional)
 Vi = volume of ith component of matrix rock
 Vsh = volume of shale (fractional)
 By
                rearranging the density response equation, we can derive apparent
                matrix density, based on the final effective porosity, shale volume,
                and the density log reading. Sxo is assumed to be 1.0. The matrix
                density thus derived can be compared to the known matrix density
				data
                to find an approximate lithology. 
				Calculate
                density log value from porosity log reading.2: DENS = PHID * KD1 + (1 - PHID)
				* KD2
 3: DENSSH = PHIDSH * KD1 + (1 - PHIDSH)
				* KD2
 Calculate matrix density
 4: IF Vsh + PHIe < 0.95
 5: THEN DENSma = (DENS - PHIe * DENSW - Vsh * DENSSH) / (1 - PHIe
                - Vsh)
 6: OTHERWISE DENSma = DENS
 Calculate mineral volumes (relative to each other)
 7: Vmin1 = (DENSma - DENS2) / (DENS1 - DENS2)
 8: Vmin2 = 1 - Vmin1
 Calculate mineral volumes (relative to total rock volume)
 9: Vrock = (1.0 - Vsh - PHIe)
 10: V1 = Vmin1 * Vrock
 11: V2 = Vmin2 * Vrock
 
 Where:
 DENS = density log reading (gm/cc or kg/m3)
 DENS1 = density of first mineral (gm/cc or kg/m3)
 DENS2 = density of second mineral (gm/cc or kg/m3)
 DENSma = calculated matrix density (gm/cc or kg/m3)
 DENSSH = density log reading in shale (gm/cc or kg/m3)
 DENSW = density log reading in water (gm/cc or kg/m3)
 PHID = porosity log reading (fractional)
 PHIe = effective porosity from any method (fractional)
 PHIDSH = porosity log reading in shale (fractional)
 Vsh = volume of shale (fractional)
 Vrock = rock volume (fractional)
 Vmin1 = volume of first mineral (fractional)
 Vmin2 = volume of second mineral (fractional)
 
 Volumes for lithology track:
 V1 = relative volume of first mineral (fractional)
 V2 = relative volume of second mineral (fractional)
 
 
  Constants English Units   Metric Units    Log Scale
 KD1       1.00                 1000               All
 KD2       2.65                 2650           Sandstone
 KD2      
				2.71                 2710           Limestone
 KD2      
				2.87                 2870           Dolomite
 
					
					 COMMENTS: This equation will break down when PHIe plus Vsh approaches 1.0,
                so we limit the use of the equation to those cases where PHIe
                + Vsh < 0.95.
 The
                matrix density will be too low in gas zones and in rough hole.
                No obvious correction can be made to overcome this problem. Do
                not use apparent matrix densities under these conditions. The
                standard density neutron crossplot can be used to determine matrix
                density, as shown below. 
				 Density neutron crossplot to find DENSma
 
					
					 NUMERICAL
                EXAMPLE: 1. For Sand D in Example 1:
 PHID = 0.12
 PHIe = 0.11
 Vsh = 0.33
 DENSW = 1000 kg/m3
 DENSMA = 2150 kg/m3
 DENS = 0.12 * 1.00+ (1 - 0.12) * 2.65 = 2.452
 DENSSH = 0.03 * 1.00 + (1 - 0.03) * 2.65 = 2.600
 DENSW = 1.000
 DENSma = (2.452 - 0.11 * 1.0 - 0.33 * 2.65) / (1 - 0.11
                - 0.33) = 2.620 g/cc
 2.
                If we use the Vsh from the density neutron crossplot (Vsh = 0.59)DENSma = (2.452 - 0.11 * 1.0 - 0.59 * 2.65) / (1 - 0.11
                - 0.59) = 4.680 g/cc
 This
                is an impossible result which suggests that the shale volume or
                the effective porosity is wrong. Calculated matrix density can
                thus be used as a quality control indicator when it exceeds reasonable
                bounds. 3.
                Assume the two mineral model consists of quartz and dolomite and
                the computed matrix density is 2680 kg/m3. Then:Vsh = 0.10
 PHIe = 0.20
 DENS1 = 2650 kg/m3 (Sandstone)
 DENS2 = 2870 kg/m3 (Dolomite)
 
 Vrock = 1 - 0.10 - 0.20 = 0.70
 Vmin1 = (2680 - 2870) / (2650 - 2870) = 0.86
 Vmin2 = 1.00 - 0.86 = 0.14
 
 Volumes for lithology track:
 V1 = 0.86 * 0.70 = 0.60
 V2 = 0.14 * 0.70 = 0.10
 PHIe + Vsh + Vmin1 + Vmin2 = 0.20 + 0.10 + 0.60
			+ 0.10 = 1.00
 This rock is composed of 10% shale, 20% porosity, 60% quartz, 10%
			dolomite. The quartz/dolomite ratio is 0.86 to 0.14.= 6.14.
 
 
			
			
			
			
			 DENSITY
			LITHOLOGY CODES To
                produce a lithology code on computer listings, we bracket the
                DENSma values as follows:
 
 DlithCode - Density Lithology Codes
 DENSma                              DlithCode
 < 2630 and bad hole              HOLE
 < 2630 and coal trigger set    COAL
 < 2630 and good hole            GAS
 2630 - 2659                             QRTZ
 ** 2660 - 2699                         LMSD
 ** 2700 - 2729                         LIME
 ** 2730 - 2799                         LMDL
 2800 - 2879                            DOLO
 2880 - 3149                            ANHY
 3150 and above                    HEVY
 no value computed                 ----
 any value and Vsh > 0.85      SHLE
 ** Could be DLSD if PE < 3.0
 Evaporites
                require special handling in computer programs and the above codes
                should be expanded to include:DENSma                               DLITHCODE
 2500 - 2629                        gas or bad hole as above
 2300 - 2499                              GYPS
 2000 - 2299 and low sonic       SALT
 2000 - 2299 and high sonic      SULF
 1800 - 1999                              SYLV
 1500 - 1799                              CARN
 
				
				
			
			 PARAMETERS 
  
  
 |